Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts

Identifieur interne : 001935 ( Main/Exploration ); précédent : 001934; suivant : 001936

Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts

Auteurs : Alexander W. Caulk [États-Unis] ; Zhanna V. Nepiyushchikh [États-Unis] ; Ryan Shaw [États-Unis] ; J. Brandon Dixon [États-Unis] ; Rudolph L. Gleason [États-Unis]

Source :

RBID : PMC:4528593

Descripteurs français

English descriptors

Abstract

Mechanical loading conditions are likely to play a key role in passive and active (contractile) behaviour of lymphatic vessels. The development of a microstructurally motivated model of lymphatic tissue is necessary for quantification of mechanically mediated maladaptive remodelling in the lymphatic vasculature. Towards this end, we performed cylindrical biaxial testing of Sprague–Dawley rat thoracic ducts (n = 6) and constitutive modelling to characterize their mechanical behaviour. Spontaneous contraction was quantified at transmural pressures of 3, 6 and 9 cmH2O. Cyclic inflation in calcium-free saline was performed at fixed axial stretches between 1.30 and 1.60, while recording pressure, outer diameter and axial force. A microstructurally motivated four-fibre family constitutive model originally proposed by Holzapfel et al. (Holzapfel et al. 2000 J. Elast. 61, 1–48. (doi:10.1023/A:1010835316564)) was used to quantify the passive mechanical response, and the model of Rachev and Hayashi was used to quantify the active (contractile) mechanical response. The average error between data and theory was 8.9 ± 0.8% for passive data and 6.6 ± 2.6% and 6.8 ± 3.4% for the systolic and basal conditions, respectively, for active data. Multi-photon microscopy was performed to quantify vessel wall thickness (32.2 ± 1.60 µm) and elastin and collagen organization for three loading conditions. Elastin exhibited structural ‘fibre families’ oriented nearly circumferentially and axially. Sample-to-sample variation was observed in collagen fibre distributions, which were often non-axisymmetric, suggesting material asymmetry. In closure, this paper presents a microstructurally motivated model that accurately captures the biaxial active and passive mechanical behaviour in lymphatics and offers potential for future research to identify parameters contributing to mechanically mediated disease development.


Url:
DOI: 10.1098/rsif.2015.0280
PubMed: 26040600
PubMed Central: 4528593


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts</title>
<author>
<name sortKey="Caulk, Alexander W" sort="Caulk, Alexander W" uniqKey="Caulk A" first="Alexander W." last="Caulk">Alexander W. Caulk</name>
<affiliation wicri:level="1">
<nlm:aff id="af1">
<addr-line>The George W. Woodruff School of Mechanical Engineering</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Nepiyushchikh, Zhanna V" sort="Nepiyushchikh, Zhanna V" uniqKey="Nepiyushchikh Z" first="Zhanna V." last="Nepiyushchikh">Zhanna V. Nepiyushchikh</name>
<affiliation wicri:level="1">
<nlm:aff id="af1">
<addr-line>The George W. Woodruff School of Mechanical Engineering</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shaw, Ryan" sort="Shaw, Ryan" uniqKey="Shaw R" first="Ryan" last="Shaw">Ryan Shaw</name>
<affiliation wicri:level="1">
<nlm:aff id="af1">
<addr-line>The George W. Woodruff School of Mechanical Engineering</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J. Brandon" last="Dixon">J. Brandon Dixon</name>
<affiliation wicri:level="1">
<nlm:aff id="af1">
<addr-line>The George W. Woodruff School of Mechanical Engineering</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="af2">
<addr-line>The Wallace H. Coulter Department of Biomedical Engineering</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="af3">
<addr-line>The Petit Institute for Bioengineering and Bioscience</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gleason, Rudolph L" sort="Gleason, Rudolph L" uniqKey="Gleason R" first="Rudolph L." last="Gleason">Rudolph L. Gleason</name>
<affiliation wicri:level="1">
<nlm:aff id="af1">
<addr-line>The George W. Woodruff School of Mechanical Engineering</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="af2">
<addr-line>The Wallace H. Coulter Department of Biomedical Engineering</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="af3">
<addr-line>The Petit Institute for Bioengineering and Bioscience</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26040600</idno>
<idno type="pmc">4528593</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528593</idno>
<idno type="RBID">PMC:4528593</idno>
<idno type="doi">10.1098/rsif.2015.0280</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000295</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000295</idno>
<idno type="wicri:Area/Pmc/Curation">000295</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000295</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000F37</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000F37</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="wicri:Area/PubMed/Corpus">000E54</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E54</idno>
<idno type="wicri:Area/PubMed/Curation">000E54</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000E54</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000E54</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000E54</idno>
<idno type="wicri:Area/Ncbi/Merge">007456</idno>
<idno type="wicri:Area/Ncbi/Curation">007456</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">007456</idno>
<idno type="wicri:doubleKey">1742-5689:2015:Caulk A:quantification:of:the</idno>
<idno type="wicri:Area/Main/Merge">001937</idno>
<idno type="wicri:Area/Main/Curation">001935</idno>
<idno type="wicri:Area/Main/Exploration">001935</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts</title>
<author>
<name sortKey="Caulk, Alexander W" sort="Caulk, Alexander W" uniqKey="Caulk A" first="Alexander W." last="Caulk">Alexander W. Caulk</name>
<affiliation wicri:level="1">
<nlm:aff id="af1">
<addr-line>The George W. Woodruff School of Mechanical Engineering</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Nepiyushchikh, Zhanna V" sort="Nepiyushchikh, Zhanna V" uniqKey="Nepiyushchikh Z" first="Zhanna V." last="Nepiyushchikh">Zhanna V. Nepiyushchikh</name>
<affiliation wicri:level="1">
<nlm:aff id="af1">
<addr-line>The George W. Woodruff School of Mechanical Engineering</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shaw, Ryan" sort="Shaw, Ryan" uniqKey="Shaw R" first="Ryan" last="Shaw">Ryan Shaw</name>
<affiliation wicri:level="1">
<nlm:aff id="af1">
<addr-line>The George W. Woodruff School of Mechanical Engineering</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J. Brandon" last="Dixon">J. Brandon Dixon</name>
<affiliation wicri:level="1">
<nlm:aff id="af1">
<addr-line>The George W. Woodruff School of Mechanical Engineering</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="af2">
<addr-line>The Wallace H. Coulter Department of Biomedical Engineering</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="af3">
<addr-line>The Petit Institute for Bioengineering and Bioscience</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gleason, Rudolph L" sort="Gleason, Rudolph L" uniqKey="Gleason R" first="Rudolph L." last="Gleason">Rudolph L. Gleason</name>
<affiliation wicri:level="1">
<nlm:aff id="af1">
<addr-line>The George W. Woodruff School of Mechanical Engineering</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="af2">
<addr-line>The Wallace H. Coulter Department of Biomedical Engineering</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="af3">
<addr-line>The Petit Institute for Bioengineering and Bioscience</addr-line>
,
<institution>Georgia Institute of Technology</institution>
,
<addr-line>Atlanta, GA</addr-line>
,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of the Royal Society Interface</title>
<idno type="ISSN">1742-5689</idno>
<idno type="eISSN">1742-5662</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Elastin (metabolism)</term>
<term>Male</term>
<term>Models, Biological</term>
<term>Pressure</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Stress, Mechanical</term>
<term>Thoracic Duct (cytology)</term>
<term>Thoracic Duct (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Conduit thoracique (cytologie)</term>
<term>Conduit thoracique (métabolisme)</term>
<term>Contrainte mécanique</term>
<term>Modèles biologiques</term>
<term>Mâle</term>
<term>Pression</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Élastine (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Elastin</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Conduit thoracique</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Thoracic Duct</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Thoracic Duct</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Conduit thoracique</term>
<term>Élastine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Male</term>
<term>Models, Biological</term>
<term>Pressure</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Stress, Mechanical</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Contrainte mécanique</term>
<term>Modèles biologiques</term>
<term>Mâle</term>
<term>Pression</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Mechanical loading conditions are likely to play a key role in passive and active (contractile) behaviour of lymphatic vessels. The development of a microstructurally motivated model of lymphatic tissue is necessary for quantification of mechanically mediated maladaptive remodelling in the lymphatic vasculature. Towards this end, we performed cylindrical biaxial testing of Sprague–Dawley rat thoracic ducts (
<italic>n</italic>
= 6) and constitutive modelling to characterize their mechanical behaviour. Spontaneous contraction was quantified at transmural pressures of 3, 6 and 9 cmH
<sub>2</sub>
O. Cyclic inflation in calcium-free saline was performed at fixed axial stretches between 1.30 and 1.60, while recording pressure, outer diameter and axial force. A microstructurally motivated four-fibre family constitutive model originally proposed by Holzapfel
<italic>et al</italic>
. (Holzapfel
<italic>et al</italic>
. 2000
<italic>J. Elast.</italic>
61, 1–48. (
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1023/A:1010835316564">doi:10.1023/A:1010835316564</ext-link>
)) was used to quantify the passive mechanical response, and the model of Rachev and Hayashi was used to quantify the active (contractile) mechanical response. The average error between data and theory was 8.9 ± 0.8% for passive data and 6.6 ± 2.6% and 6.8 ± 3.4% for the systolic and basal conditions, respectively, for active data. Multi-photon microscopy was performed to quantify vessel wall thickness (32.2 ± 1.60 µm) and elastin and collagen organization for three loading conditions. Elastin exhibited structural ‘fibre families’ oriented nearly circumferentially and axially. Sample-to-sample variation was observed in collagen fibre distributions, which were often non-axisymmetric, suggesting material asymmetry. In closure, this paper presents a microstructurally motivated model that accurately captures the biaxial active and passive mechanical behaviour in lymphatics and offers potential for future research to identify parameters contributing to mechanically mediated disease development.</p>
</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Caulk, Alexander W" sort="Caulk, Alexander W" uniqKey="Caulk A" first="Alexander W." last="Caulk">Alexander W. Caulk</name>
</noRegion>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J. Brandon" last="Dixon">J. Brandon Dixon</name>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J. Brandon" last="Dixon">J. Brandon Dixon</name>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J. Brandon" last="Dixon">J. Brandon Dixon</name>
<name sortKey="Gleason, Rudolph L" sort="Gleason, Rudolph L" uniqKey="Gleason R" first="Rudolph L." last="Gleason">Rudolph L. Gleason</name>
<name sortKey="Gleason, Rudolph L" sort="Gleason, Rudolph L" uniqKey="Gleason R" first="Rudolph L." last="Gleason">Rudolph L. Gleason</name>
<name sortKey="Gleason, Rudolph L" sort="Gleason, Rudolph L" uniqKey="Gleason R" first="Rudolph L." last="Gleason">Rudolph L. Gleason</name>
<name sortKey="Nepiyushchikh, Zhanna V" sort="Nepiyushchikh, Zhanna V" uniqKey="Nepiyushchikh Z" first="Zhanna V." last="Nepiyushchikh">Zhanna V. Nepiyushchikh</name>
<name sortKey="Shaw, Ryan" sort="Shaw, Ryan" uniqKey="Shaw R" first="Ryan" last="Shaw">Ryan Shaw</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001935 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001935 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     PMC:4528593
   |texte=   Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26040600" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024